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CROSS EFFECTS IN SOLID MEDIA WITH DIFFUSION

UDC 531+541+539A. G. Knyazeva

Based on thermodynamics of irreversible processes, possible cross effects in isothermal diffusion in
solids with internal surfaces are analyzed. Expressions for the fluxes of components and for the fluxes
of a newly introduced thermodynamic parameter, specific area of internal surfaces per unit volume or
mass of the medium, are obtained. An analysis of these relations and relations between the stresses
and strains for various cases is given. In derivation of the governing relations, it was assumed that
diffusion proceeds through interstitial sites.
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Introduction. There are many papers on modeling diffusion in solids, considering the possibility of different
diffusion mechanisms in different media. Two major mechanisms of diffusion in crystals are currently distinguished:
substitutional diffusion, where atoms in crystals migrate only through vacant lattice sites, and interstitial diffusion,
where the migrating atoms diffuse only through interstitial sites, the presence or absence of vacancies in this case
being of minor importance.

The reported models were constructed to describe idealized situations, ignoring cross effects typical of solids
or taking into account small deformations in the diffusion zone. For instance, in [1], solid-state diffusion in crystals
proceeding by the substitutional or interstitial mechanism was analyzed for an isotropic incompressible medium with
allowance for stresses and small deformations. Numerous particular models for diffusion in bodies with structural
nonuniformities were reported in [2, 3]. Attempts were made to describe diffusion within the continuum-mechanics
approach in [4]. In most of these works, problems of synthesis and processing of new materials were not considered,
because these models disregard many phenomena observed in real crystals. In particular, this refers to diffusion in
media with internal interfaces, such as grain and interphase boundaries. Available models for boundary diffusion
based on Fisher’s model [5] treat an individual boundary. For this reason, they do not describe multi-component
diffusion or diffusion in nanostructured media. To describe properties of such media and physicochemical processes
in them (generally, nonequilibrium ones), another approach is required.

In the present work, to construct a model for diffusion in a medium with a nonuniform internal structure,
we use concepts borrowed from thermodynamics of irreversible processes [6] and introduce a new generalized ther-
modynamic parameter fs, which is the specific area of internal interfaces per unit volume or mass of the medium.
As is well known, introduction of new variables makes it possible to use the tools of the present-day mechanics
of continuous media, i.e., the tools of thermomechanics of continuous media, to describe nonequilibrium processes.
Among various available thermodynamic theories, the local-equilibrium theory seems to be most substantiated from
the physical point of view; this model can easily be generalized to treat “fine” physical effects in simple media or
analyze processes in structurally nonuniform media in a simple manner.

The description of interstitial diffusion, which is typical, for instance, for gas-phase diffusion into metals,
is analogous to its description in hydrodynamics. The construction of a model for solid-state diffusion within the
framework of mechanics of continuous media makes it possible to include many effects experimentally observed
in solids. Substitutional diffusion treated within the framework of mechanics of continuous media requires special
consideration.
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Note, at temperatures much lower than the melting point, there is almost no difference between the two
diffusion mechanisms; in this case, the hydrodynamic model should be used.

1. General Relations. Cross Effects. We consider a multi-component thermodynamic system with
internal interfaces. In this case, the local internal energy of the system u is a function of local entropy s, strain-
tensor components εij , mass concentrations of the reacting and migrating components Ck (k = 1, 2, . . . , n)) and the
new parameter fs:

u = u(s, εij , Ck, fs).

The Gibbs equation for such a system has the form

du = T ds+ σeijρ
−1 dεij +

n∑
k=1

gk dCk − gf dfs, (1)

where T is the temperature, σeij are the strain-tensor components calculated from elastic strains, gk are the chemical
potentials of the components, and gf is the energy of the internal interfaces per unit mass or volume of the medium
(depending on the definition of the parameter fs).

Using the Gibbs energy g = u− ρ−1εijσ
e
ij − Ts, we can write (1) in the form

dg = −s dT − εijρ−1 dσeij +
n∑
k=1

gk dCk − gf dfs. (2)

This form of the Gibbs equation is more convenient for the description of the processes proceeding under the
conditions T = const and σeij = const. In the general case, like the potential g, the parameters s, εij , gk, and gf
are functions of the variables T , σeij , Ck, and fs. Hence, we can write the following system of total differential
equations:

ds =
( ∂s
∂T

)
dT +

∑
(i,j)

( ∂s

∂σij

)
dσeij +

n∑
k=1

( ∂s

∂Ck

)
dCk +

( ∂s
∂fs

)
dfs; (3)

dεij =
(∂εij
∂T

)
dT +

∑
(α,β)

( ∂εij
∂σαβ

)
dσeαβ +

n∑
k=1

(∂εij
∂Ck

)
dCk +

(∂εij
∂fs

)
dfs; (4)

dgk =
(∂gk
∂T

)
dT +

∑
(i,j)

( ∂gk
∂σij

)
dσeij +

n∑
m=1

( ∂gk
∂Cm

)
dCm +

(∂gk
∂fs

)
dfs; (5)

dgf =
(∂gf
∂T

)
dT +

∑
(i,j)

( ∂gf
∂σij

)
dσeij +

n∑
k=1

( ∂gf
∂Ck

)
dCk +

(∂gf
∂fs

)
dfs. (6)

Here, the partial derivatives with respect to thermodynamic variables are taken for all other quantities being fixed.
These equations take into account all direct processes and cross effects observed in composite media. For instance,
the coefficient at the temperature differential in (3) includes the heat capacity under constant stress

cσ = T
( ∂s
∂T

)
σ̂,Ck,fs

= −T
( ∂2g

∂T 2

)
σ̂,Ck,fs

,

while Eq. (4) with dT = 0, dCk = 0, and dfs = 0 yields the differential form of Hooke’s law

dεij = sijαβ dσ
e
αβ , (7)

where

sijαβ =
( ∂εij
∂σeαβ

)
T,Ck,fs

= −ρ
( ∂2g

∂σeij ∂σ
e
αβ

)
T,Ck,fs

are the elastic compliance coefficients, which form a fourth-rank tensor. If the temperature is not constant, then
Eq. (4) yields the Duhamel–Neumann relations for an anisotropic medium:

dεij = sijαβ dσ
e
αβ + α

(T )
ij dT,

where

α
(T )
ij =

(∂εij
∂T

)
Ck,fs,σ̂

= −ρ
( ∂2g

∂T ∂σeij

)
Ck,fs
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are the linear thermal-expansion coefficients, which, in the general case, form a second-rank tensor. It follows from
(2)–(4) that the variation of the strain-tensor components with temperature is described by the same coefficients
as the variation of entropy caused by the variation of the strain-tensor components:

α
(T )
ij =

(∂εij
∂T

)
Ck,fs,σ̂

= ρ
( ∂s

∂σeij

)
Ck,fs,T

. (8)

These coefficients describe the well-known cross effect observed in solids under heating or deformation (we will call
them the direct effect and the inverse effect, respectively).

Similarly, if the chemical potential of the kth component varies as the stress-tensor components undergo
changes, then the inverse effect, i.e., the variation of the strain-tensor components caused by the variation of the
concentration of this component (due to diffusion or a physico-chemical transformation), is also observed:

α
(k)
ij =

(∂εij
∂Ck

)
T,fs,Cl,l 6=k,σ̂

= −ρ
( ∂gk
∂σeij

)
T,fs,Cl

. (9)

In thermodynamics, equations of the type (4) are known as generalized linearized nonequilibrium equations
of state, and equations of the type (8) and (9) are known as the Maxwell relations. For the linear governing relations
(3)–(6) to be satisfied, it is sufficient that the increment of the Gibbs energy relative to the equilibrium state be
an expression that involves squared increments of the variables T , σeij , Ck, and fs. Since the partial derivatives in
(7)–(9) are taken with respect to local thermodynamic variables, which are functions of the independent coordinates
xi and time t, then taking the density outside the sign of the derivative is mathematically admissible.

2. Derivation of Relations for Irreversible Fluxes. Let us write several expressions that will be helpful
in subsequent considerations.

The total system of equations of mechanics of a multi-species continuous medium, where volume solid-phase
diffusion proceeds through interstitial sites, can be represented in the form [6–9]

dρ

dt
+ ρ∇ · v = 0; (10)

ρ
dCk
dt

+∇ · Jk = σk; (11)

ρ
dv

dt
= ∇ · σ̂ + ρF ≡ ∇ · σ̂ + ρ

n∑
k=1

CkFk; (12)

ρ
du

dt
= −∇ · JT + σ̂ · ·∇v +

n∑
k=1

Jk · Fk, (13)

where Ck = ρk/ρ and ρk are the partial densities of the components, Jk = ρk(vk − v) and σk are the diffusion mass
flux and the sum of sources and sinks for the kth component, v is the velocity of the center of mass, given by the
equation

ρv =
n∑
k=1

ρkvk,

JT is the heat-flux density (its conductive part), Fk is the component of the external mass forces acting on the kth
component, and ∇ · v = div v. If necessary, equations of angular-momentum and electric-charge balance should be
added to system (10)–(13). In addition, system (10)–(13) should be supplemented by relations between irreversible
fluxes and generalized thermodynamic forces causing these fluxes, and by the balance equation for the new parameter
in the form

dfs
dt

+∇ · Jf = σf , (14)

where Jf is the “diffusion” flux and the quantity σf describes the formation and accumulation of internal interfaces.
As is known, the linear relations for the fluxes can be found from the entropy-balance equation, provided that entropy
generation is nonnegative. To construct this equation, we write the Gibbs equation (1) in the form

ds

dt
=

1
T

du

dt
−
σeij
ρT

dεij
dt
−

n∑
k=1

gk
T

dCk
dt

+
gf
T

dfs
dt

(15)
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and use Eqs. (11) and (13). In writing (1) and (15), we took into account that Eqs. (1)–(6) include only the stress-
tensor components causing only “elastic” deformations, which are related, by definition [8], to the stress-tensor
components by linear relations of the type (4). To describe irreversible-deformation processes, it is required to
introduce some additional thermodynamic parameters; in the present work, such parameters are introduced using
the variables Ck, fs, etc. Simultaneously, Eqs. (12) and (13) involve the whole stress tensor. In thermodynamics,
expressions for inelastic components of this tensor can be obtained similarly to the expressions for irreversible fluxes.
For this reason, it makes sense to call the strain-tensor components given by relations (4) reversible and the com-
ponents obtained from (15) under nonnegative entropy generation, irreversible. This classification is conventional
since deformations induced by irreversible processes are most likely irreversible even if they are related to stresses
by linear relations. In available dislocation theories of plasticity, the stresses are linearly related with, e.g., strains
caused by dislocation origination and multiplication.

We represent the total tensor σ̂ as the sum of its spherical and deviatoric components

σ̂ = −pδ̂ + ŝ (16)

(δ̂ is the unit tensor, p = −σkk/3, and sij = σij − σkk/3) and the pressure and deviator in the form

p = pe + pi, ŝ = ŝe + ŝi. (17)

Here, the subscripts e and i refer to the elastic and irreversible processes, respectively. Then, using (16) and (17),
from (11), (13) and (15), we obtain the following relation for entropy generation:

σs = −JT ·
(∇T
T 2

)
−

n∑
k=1

Jk ·
(
∇
(gk
T

)
− Fk

T

)
− Jf · ∇

(gf
T

)
− 1
T

r∑
i=1

ϕiAi

− 1
T
gfσf −

pi

T
∇ · v +

1
T
ŝi · ·∇v +

1
T

[
ŝe · ·∇v − ŝe · · d

dt
ε̂
]
> 0. (18)

Here Ai = −
n∑
k=1

gkmkνki is the affinity of the ith chemical reaction, mk is the molar weight of the kth component,

and νki is the stoichiometric coefficient of the kth component in the ith reaction; the last bracketed term is nonzero
only if the strain-rate tensor is asymmetric. For relation (18) to be satisfied, it suffices that the linear relations
between the fluxes and the generalized driving thermodynamic forces, which are described by tensor quantities of
identical structures, be fulfilled. For instance, if σf = 0 and σk = 0, then we have

pi = −æ∇ · v; (19)

ŝ = Cijαβ∇v. (20)

Relation (19) is the Newton viscosity law and relation (20) is the generalized Navier–Stokes law. Media that satisfy
these relations are called viscous [8].

It follows from (4), (19), and (21) that there are three types of irreversible mechanical processes: 1) processes
described by relations of the types (19) and (20), caused by viscosity of the medium; 2) processes caused by
irreversible processes of various physicochemical nature [in this case, the components of the stress and strain tensors
are related by linear relations of the type (4)]; 3) processes that are induced by asymmetry of the strain tensor
and correspond to entropy generation in the brackets of (18). Note, if the sources and sinks for the components
and for the new thermodynamic parameter are nonzero, then they enter relation (19) with their relaxation times
(characteristic transformation times). For instance,

pi = −æ∇ · v −
r∑
j=1

Lj
Aj
T
−M gf

T
,

where Lj and M are phenomenological coefficients. The expression for reaction rates is written in a similar manner.
Apparently, heat and mass transfer, physicochemical transformations, nucleation and multiplication of var-

ious lattice defects, and other irreversible processes described by relations (4) and (19) result in phenomena that
are classified as plastic in mechanics of deformable solids and that can be describes with a great number of various
theories involved.

In what follows, we consider diffusion-type irreversible transfer processes.
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In the case with no external forces (F = 0), the following equality is valid for the flux of a component
(this equality follows from the nonnegativeness of entropy generation by irreversible processes described by vector
quantities):

Jk = −
n∑
l=1

Lkl∇
(gl
T

)
− Lks∇

(gf
T

)
− LkT

∇T
T 2

. (21)

There is an similar relation for the flux of internal interfaces:

Jf = −
n∑
l=1

Lsl∇
(gl
T

)
− Lss∇

(gf
T

)
− LsT

∇T
T 2

. (22)

Generally speaking, in constructing a model for a particular medium, one can use, instead of (20)–(22), nonlinear
relations and integrodifferential equations, whose limiting cases give generic laws that involve relaxation times of
the fluxes of heat, mass, etc. It is obvious that, in each particular case, a special analysis of applicability of such
laws is necessary. In generalization to the nonlinear region, condition (18) does not always hold and, to formulate
the second law of thermodynamics, Prigogine’s evolution criterion should be used [9].

We perform an analysis of the relations for irreversible fluxes (21) and (22) and for associated “elastic”
deformations under the condition T = const. From here on, the subscript e is omitted.

3. Diffusion and Stresses. For dT = 0 and dfs = 0, instead of (4) and (5), we have

dεij = sijαβ dσαβ +
n∑
k=1

α
(k)
ij dCk; (23)

dgk = −α(k)
ij ρ

−1 dσij +
n∑
l=1

β
(k)
l dCl. (24)

The expressions for the coefficients β(k)
l are

β
(k)
l =

∂gk
∂Cl

=
RT

mkCk
gkl, (25)

where gkl = δkl+(Ck/Cl)∂ ln γk/∂ lnCl are the thermodynamic multipliers resulting from the definition of chemical
potentials of components for simple media [10, 11]

dgk = (RT/mk) d ln (γkCk).

Here γk is the coefficient of activity of the kth component in the solution or mixture (in the general case, γk is a
complex function of all concentrations, and its form depends on the type of the solid solution or mixture), and mk is
the molar weight of the kth component. Equation (23) extends Hooke’s law to the case of an anisotropic medium
with diffusion. A similar generalization was reported in [12]. The second-rank tensor α(k)

ij has the same structure
as the tensor of thermal-expansion coefficients. In a particular case of an isotropic medium, Eq. (23) yields the
well-known relations [1] written in the differential form

dεij =
1
E

[(1 + ν) dσij − νδij dσkk] + δij

n∑
k=1

αk dCk, (26)

where E is Young;s modulus, ν is Poisson’s ratio, and αk are the crystal-lattice thermal-expansion or dilatation
coefficients. Summing (26) over all i = j, we obtain the equality

dV = ρ−1 dεkk = Vp dp+
n∑
k=1

Vk dCk,

from which it follows that the change in the volume of the thermodynamic system of interest is caused by the
change in pressure dp = −dσkk/3 (Vp = −(1 − 2ν)/(ρE)) and by the change in concentrations of the components
(Vk = 3αk/ρ). Obviously, the following alternative form of relations (26) is possible:

dσij = 2µdεij + δij

[
λ dεkk − 3K

n∑
k=1

αk dCk

]
.

Here, λ and µ are the Lamé coefficients and K = λ+ 2µ/3 is the bulk compression modulus.
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Relations (24) take into account the variation of chemical potentials of the components caused by the change
in their concentrations and in the stress-tensor components. Using (24) and (21) with dT = 0 and dfs = 0 and
taking into account definitions (9) and (25), we obtain:

Jk = −
n∑
l=1

Lkl
T

(∇gl)T ≡ −
n∑
l=1

[n−1∑
j=1

Lkl
T

β
(l)
j ∇Cj −

∑
(i,j)

Lkl
T

α
(l)
ij

ρ
∇σij

]
= −ρ

n−1∑
j=1

Dkj∇Cj +
∑
(i,j)

B
(k)
ij ∇σij . (27)

Here

Dkj =
1
Tρ

n∑
l=1

Lklβ
(l)
j (28)

are the partial diffusion coefficients and

B
(k)
ij =

n∑
l=1

α
(l)
ij

Lkl
Tρ

(29)

are the stress-induced transport coefficients. In writing (27), we took into account that, in a system composed of n
components, only n− 1 components are independent because

∑
(k)

Ck = 1. In addition, by definition, among a total

of n fluxes, only n− 1 fluxes are independent because
∑
(k)

Jk = 0.

In the case of a binary system, we have only one relation for the flux

J1 = −ρD11∇C1 +
∑
(i,j)

B
(1)
ij ∇σij , (30)

where

D11 = [L11β
(1)
1 + L12β

(2)
1 ]/(ρT ); (31)

B
(1)
ij = [L11α

(1)
ij + L12α

(2)
ij ]/(ρT ). (32)

In the diffusion theory, two types of approximations are usually considered. In the first case, it is assumed that the
solution is ideal; then, dgk = (RT/mk) d lnCk (i.e., γk ≡ 1), g11 = 1, g12 = 0, and the self-diffusion coefficient of
component 1 can be obtained from (31):

D11 = L11R/(m1C1ρ) = D∗1 . (33)

In the second case, it is assumed that the solution is nonideal, but, unlike the diagonal coefficient L11, the cross
coefficient L12 can be neglected (this approximation can be justified by methods of statistical thermodynamics).
Then, we have

D11 = L11Rg11/(m1C1ρ) = D∗1g11. (34)

In a similar manner, we obtain

D22 = L22Rg22/(m2C2ρ) = D∗2g22.

Expressing the coefficient L11 from (33) and neglecting the coefficient L12, we can represent the stress-induced
transport coefficients (32) as

B
(1)
ij = α

(1)
ij D

∗
1m1C1/(RT ). (35)

Apparently, similar approximations (for the ideal and nonideal solutions) are also valid for a multi-species medium.
In the case of a two-component isotropic medium, from (30), (34), and (35), we have

B
(1)
ij = α1D

∗
1m1C1δij/(RT )

and
J1 = −ρD∗1g11∇C1 + α1(D∗1m1C1/(RT ))∇σkk. (36)

With dT = 0, dfs = 0, and F = 0, the total system of equations of mechanics of an “elastic” continuous medium
for interrelated mass-transfer and deformation processes acquires the form

dρ

dt
+ ρ∇ · v = 0, ρ

dC1

dt
+∇ · J1 = σ1, ρ

dv

dt
= ∇ · σ̂, ρ

du

dt
= σ̂ · ·∇v. (37)
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This system should be closed by the relation for the mass flux (36), the linear relations between the compo-
nents of the stress and strain tensors in the form (26), and the mass-balance equation C2 + C1 = 1. System (37)
(derived with no restrictions imposed on the value of strains) can be simplified in the case of small deformations
and low velocities and accelerations, for which the following relations are valid [8]:

∇ · v = 0,
dρ

dt
= 0, εij =

1
2

( ∂ui
∂xj

+
∂uj
∂xi

)
,

dv

dt
≈ ∂2u

∂t2

(i.e., for an incompressible medium). Here u is the displacement vector. In this case, from the “total” system (37),
we obtain the system of mass-elasticity equations [1] for a two-component mixture (solid solution)

ρ
∂2u

∂t2
= ∇ · σ̂; (38)

∂C1

∂t
= ∇ · [D∗1g11∇C1]− α1D

∗
1m1

RTρ
∇ · (C1∇σkk) + ρ−1σ1; (39)

dσij = 2µdεij + δij [λdεkk − 3K(α1 − α2) dC1], (40)

where the strains are given by the Cauchy relations.
The system of mass-elasticity equations can be alternatively derived using expansion of the local Gibbs

energy in powers of low stresses [4] and concentrations or expansion of free Helmholtz energy in powers of small
deformations and concentrations [1].

In particular problems, for instance, in problems considered in [1], in view of the fact that the propagation
velocity of mechanical disturbances is much (by two to five orders of magnitude) greater than the velocity of
substance transport by means of diffusion, it is a common practice to disregard inertial forces in the equation of
motion (38) and pass to analyzing quasistatic problems. Another assumption adopted almost in all available papers
(see [1–3]) is the smallness of the second term in the transport equation (39). Nevertheless, under the conditions
of an intense mechanical loading generating large stress gradients, the transfer of the substance under the action of
∇σkk prevails over the diffusion transport or, at least, is comparable with it. In this case, neglecting inertial forces
in (38) and the term related to stresses in (39) becomes inadequate. From the mathematical point of view, weak
perturbations induced by the terms ignored in available publications are singular. Problems based on models of the
types (37), (36), (26) or (38)–(40) require a special study.

In contrast to the statement put forward in [1], the transfer of the substance under the action of the
parameter ∇σkk more closely resembles barodiffusion than thermal expansion. This conclusion is confirmed by an
analysis of the equation for the flux of the second component. By definition of the diffusion fluxes,

J2 = −J1 = −ρD∗1g11∇C2 − α1(D∗1m1(1− C2)/(RT ))∇σkk.

Hence, the mixing rate of one component in a binary system increases under the action of the stress gradient, while
the mixing rate of the other component decreases, as it also occurs in the hydrodynamic model of diffusion [6, 13].

For the case of an isotropic medium, simple procedures for estimating the coefficients αk are available [14].
Very likely, the phenomenon of abnormally fast solid-phase mixing of the substance experimentally ob-

served under intense mechanical actions and also some rapid regimes of solid-phase transformations under specific
conditions (see, e.g., [15]) can be attributed to the transfer of the substance under the action of stress gradients.

4. Diffusion in a Medium with Internal Interfaces. We consider a hydrodynamic system with dT = 0
and dσij = 0 but assume now that the variation of the area of internal interfaces cannot be ignored. Then, it follows
from (5) and (6) that

dgk =
n∑

m=1

( ∂gk
∂Cm

)
T,σ̂,fs,Cl,l 6=m

dCm +
(∂gk
∂fs

)
T,σ̂,Cm

dfs, k = 1, 2, . . . , n,

dgf =
n∑
k=1

( ∂gf
∂Ck

)
T,σ̂,fs,Cl,l 6=k

dCk +
(∂gf
∂fs

)
T,σ̂,Ck

dfs.

(41)

Similarly to (8) and (9), we write

γ(k)
s =

∂gk
∂fs

= − ∂gf
∂Ck

=
( ∂2g

∂fs ∂Ck

)
T,σ̂

.
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It follows from this equality that the change in the chemical potential of the kth component due to the change
in the area of internal interfaces equals the change in the energy of these interfaces due to the variation of the
concentration of this component, which allows one to significantly reduce the number of coefficients required to
describe the state of the thermodynamic system. We introduce an additional parameter

Ω =
(∂gf
∂fs

)
Ck

=
( ∂2g

∂f2
s

)
Ck,σ̂,T

that describes the variation of surface energy due to the variation of surface curvature. The partial derivatives
of chemical potentials with respect to concentrations of the components are known. With the adopted notation,
system (41) becomes

dgk =
n∑
j=1

β
(k)
j dCj + γ(k)

s dfs, dgf = −
n∑
k=1

γ(k)
s dCk + Ω dfs. (42)

Using relations (21) and (22) for the fluxes and assuming that

gj = gj(C1, C2, . . . , Cn−1, fs), gf = gf (C1, C2, . . . , Cn−1, fs),

in a close analogy with (27), with the help of (42), we obtain

Jk = −ρ
n−1∑
i=1

Dki∇Ci − ρDks∇fs, Jf = −
n−1∑
j=0

Dsj∇Cj −Dss∇fs, (43)

where

Dki =
n∑
j=1

Lkj
Tρ

∂gj
∂Ci

+
Lks
Tρ

∂gs
∂Ci

=
1
Tρ

( n∑
j=1

Lkj
RT

mjCj
gji − Lksγ(i)

s

)
,

Dks =
n∑
j=1

Lkj
Tρ

∂gj
∂fs

+
Lks
Tρ

∂gs
∂fs

=
1
Tρ

( n∑
j=1

Lkjγ
(j)
s + LksΩ

)
,

(44)

Dsj =
n∑
k=1

Lsk
T

∂gk
∂Cj

+
Lss
T

∂gf
∂Cj

=
1
T

( n∑
k=1

Lsk
RT

mkCk
gkj−Lssγ(j)

s

)
,

Dss =
n∑
k=1

Lsk
T

∂gk
∂fs

+
Lss
T

∂gf
∂fs

=
1
T

( n∑
k=1

Lskγ
(k)
s + LssΩ

)
.

Although the matrix of the Onsager coefficients is symmetric, the matrix of diffusion coefficients can be
devoid of this property.

In their physical meaning, the coefficients Dki are partial diffusion coefficients in the bulk of a polycrystalline
system. Their values differ from the partial diffusion coefficients in the bulk of a single crystal (28). In what
follows, we mark these coefficients with the superscripts “zero.” The difference between Dki and D0

ki, also observed
experimentally [5], is caused by the effect of internal interfaces or, more precisely, by the effect of internal energy
accumulated in the form of interfacial energy.

The coefficients Dks are the diffusivities along grain and interphase boundaries; as is well known, these
coefficients are much greater than volume diffusivity. Their values directly depend on the total energy of internal
interfaces.

The coefficients Dsj can be called the coefficients of interface migration due to gradients of concentrations
of migrating species, and the coefficients Dss can be called the coefficients of migration of internal interfaces due to
their nonuniform distribution in the polycrystal.

As the analysis of numerous data on diffusion in complex media shows, all coefficients introduced for a
polycrystalline system are experimentally measurable quantities; apparently, they can be estimated on the basis of
the simplest problems [5] for an individual interface.

We consider two approximations traditionally used in the theory of diffusion in solids.
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If the solution is ideal, then for the partial diffusion coefficients Dki and for the coefficients of interface
migration Dsj we have:

Dki =
1
ρ

(LkiR
Cimi

− Lks
T

γ(i)
s

)
, Dsj =

LsjR

Cjmj
− Lss

T
γ(j)
s .

The other coefficients remain unchanged.
If the solution is non-ideal but the cross coefficients Lij are small compared to the diagonal coefficients Lii

and, therefore, can be neglected, then, from (44), we obtain:

Dki = Lkkβ
(k)
i /(Tρ)− Lksγ(i)

s /(Tρ), Dks = [Lkkγ(k)
s + LksΩ]/(Tρ).

The other coefficients remain unchanged. Taking into account that we have

Lkkβ
(k)
i /(ρT ) = D0

ki = D∗kgki, Lkk = mkCkρD
∗
k/R

in the case of a nonideal solution (D∗k is the self-diffusion coefficient of the kth component), we write

Dki = D∗kgki − Lksγ(i)
s /(Tρ), Dks = D∗kγ

(k)
s Ckmk/(RTρ) + LksΩ/(Tρ). (45)

Let us examine interstitial diffusion in a binary system. Taking into account that C1+C2 = 1 and J1+J2 = 0,
from (43), we obtain the following system for the fluxes:

J1 = −ρD11∇C1 − ρD1s∇fs, Jf = −Ds1∇C1 −Dss∇fs.

Here D11 is the volume diffusivity, D1s is the diffusivity over grain boundaries, Ds1 is the diffusivity of the boundary
for a varied concentration of component 1, and Dss is the diffusivity of internal interfaces under the action of their
own curvature. Assuming that ∇ · v = 0 (dρ/dt = 0) and using the balance equations (11) and (14), we obtain the
system of differential equations

∂C1

∂t
= ∇ · [D11∇C1 +D1s∇fs] + σ1ρ

−1,
∂fs
∂t

= ∇ · [Ds1∇C1 +Dss∇fs] + σf , (46)

where

D11 = D∗1g11 − L1sγ
(1)
s /(Tρ), D1s = D∗1γ

(1)
s C1m1/(RT ) + L1sΩ/(Tρ),

(47)

Ds1 = R
(Ls1g11

m1C1
+
Ls2g21

m2C2

)
− Lss

T
γ(1)
s , Dss =

1
T

(Ls1γ(1)
s + Ls2γ

(2)
s + LssΩ).

A system of equations similar to (46) arises in the description of substitutional diffusion in a binary system
under conditions of a nonequilibrium vacancy concentration and also in the description of interstitial diffusion in a
ternary system. The methods of solving such systems can be used to analyze diffusion in media with internal inter-
faces. For constant diffusion coefficients, there exist exact analytical solutions of the simplest boundary problems
for system (46). These solutions, in particular, show that distributions of concentrations of the diffusing species
and the internal-interface areas can be nonmonotonic for some proportions between the diffusion coefficients, and
the positions of the extrema of the parameters C1 and fs can be noncoincident.

5. Diffusion in a Structurally Nonuniform Medium with Allowance for Stresses and Strains.
Let the thermodynamic system be under isothermal conditions, but dσij 6= 0, dfs 6= 0, and dCk 6= 0. Then, it
follows from (4)–(6) that

dεij = sijαβ dσαβ +
n∑
k=1

α
(k)
ij dCk +

(∂εij
∂fs

)
σ̂,Ck

dfs,

dgk = −α(k)
ij ρ

−1 dσij +
n∑
j=1

β
(k)
j dCj + γ(k)

s dfs, (48)

dgf =
( ∂gf
∂σij

)
Ck,fs

dσij −
n∑
k=1

γ(k)
s dCk + Ω dfs.

The new coefficients describe the interaction between the internal-stress field and the field of internal in-
terfaces. The change in the strain-tensor components due to variation of the specific area of internal interfaces
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(∂εij/∂fs) is described by the same coefficients that describe the change in the energy of internal interfaces due to
variation of the internal-stress field (∂gs/∂σij). Similarly to (9), we have

α
(s)
ij =

(∂εij
∂fs

)
σ̂,Ck

= −ρ
( ∂2g

∂fs ∂σij

)
Ck

= −ρ
( ∂2g

∂σij ∂fs

)
Ck

= ρ
( ∂gf
∂σij

)
Ck,fs

. (49)

Using (21), for a constant temperature, we can write

Jk = −
n∑
l=1

Lkl
T

[ ∂gl
∂σij

∇σij +
n−1∑
m=1

∂gl
∂Cm

∇Cm +
∂gl
∂fs
∇fs

]

−Lks
T

[ ∂gf
∂σij

∇σij +
n−1∑
m=1

∂gf
∂Cm

∇Cm +
∂gf
∂fs
∇fs

]
= −ρ

n−1∑
m=1

Dkm∇Cm − ρDks∇fs +B
(k)
ij ∇σij , (50)

where the partial diffusion coefficients Dkm and the surface-diffusion coefficients Dks are the same as in (44), whereas
the stress-induced transport coefficients have the form

B
(k)
ij =

n∑
l=1

Lkl
Tρ

α
(l)
ij −

Lks
Tρ

α
(s)
ij ,

i.e., they differ from (29).
Using (22), for the flux of interfaces, we obtain

Jf = −
n−1∑
m=1

Dsm∇Cm −Dss∇fs +B
(s)
ij ∇σij . (51)

The interface-migration coefficients Dsm and Dss can be found by formulas (44), and B
(s)
ij are the coefficients of

interface migration under the action of the stress gradient, which depend on the previously defined parameters α(k)
ij

[see (9)] and α
(s)
ij [see (49)]:

B
(s)
ij =

n∑
k=1

Lsk
Tρ

α
(k)
ij −

Lss
Tρ

α
(s)
ij .

For an isotropic medium, we have

B
(k)
ij =

( n∑
l=1

Lkl
Tρ

αk −
Lks
Tρ

αs

)
δij = Bkδij , B

(s)
ij =

( n∑
l=1

Lsl
Tρ

αl −
Lss
Tρ

αs

)
δij = Bsδij .

In this case, the last terms in the right sides of Eqs. (50) and (51) acquire the forms Bk∇σkk and Bs∇σkk,
respectively.

Neglecting the cross coefficients Lkl, which are small compared to the diagonal coefficients Lkk, and express-
ing Lkk in terms of the self-diffusion coefficient of the kth component, we describe diffusion in a nonideal isotropic
solid solution using the following relations for the transport coefficients [see (45)], the coefficients Dsj and Dss

[see (44)], and the parameters

Bk =
D∗kmkCk
RT

αk −
Lks
Tρ

αs, Bs = −
n∑
k=1

Lsk
Tρ

αk +
Lss
Tρ

αs.

We consider the case of a binary system in an isotropic medium. Equation (48) acquires the form

dεij = [(1 + ν) dσij − νδij dσkk]/E + δij [(α1 − α2) dC1 + αs dfs]. (52)

The equation for the flux of component 1 and for the flux of interfaces includes terms of three types

J1 = −ρD11∇C1 − ρD1s∇fs +B1∇σkk, Jf = Ds1∇C1 −Dss∇fs +Bs∇σkk

with six transport coefficients [see (47)]; here,

B1 = D∗1m1C1α1/(RT )− L1sαs/(Tρ), Bs = (Ls1α1 + Ls2α2)/(Tρ)− Lssαs/(Tρ).
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Neglecting the cross coefficients L1s = Ls1 and L2s = Ls2, which are small compared to the diagonal
coefficients (although this statement lacks sufficient substantiation), we can appreciably simplify the expressions for
the transport coefficients:

D11 = D∗1g11, D1s = D∗1γ
(1)
s C1m1/(RT ), Ds1 = −Lssγ(1)

s /T, Dss = LssΩ/T,

B1 = D∗1m1C1α1/(RT ), Bs = −Lssαs/(Tρ).

Considering the volume- and surface-diffusion coefficients to be known, we can represent the system of equations
for the fluxes as

J1 = −ρD∗1g11∇C1 − ρD1s∇fs +
D∗1m1C1

RT
α1∇σkk, Jf =

DssRT

ΩC1m1
∇C1 −Dss∇fs +

Dssαs
Ωρ

∇σkk. (53)

These equations yield rather obvious conclusions: the interfaces migrate in the direction opposite to the direction of
the diffusion flux of component 1 and, since D1s/D

∗
1 � 1, diffusion of interfaces under the action of the concentration

gradient prevails over the diffusion under the action of the parameter ∇f . The flux of interfaces can be represented
as

Jf = −Ds1∇C1 +
ΩDs1D

∗
1

D1sRT
C1m1∇fs +

D∗1αs
RTρ

C1m1
Ds1

D1s
∇σkk, (54)

which is more convenient, because the denominator does not contain the concentration.
As in the case of cross processes (such as diffusion, thermal conductivity, barodiffusion, thermodiffusion,

heat transfer via diffusion, and heat transfer under the action of a pressure gradient) in liquids, to describe six
transfer processes in the case under consideration, we need only three independent coefficients.

System (37) should be supplemented by Eqs. (52)–(54) and by the balance equation (14). In the case of
small deformations, we obtain system (38) and

∂C1

∂t
= −∇ · (ρ−1J1) + σ1ρ

−1,
∂fs
∂t

= −∇ · Jf + σf ,

where the fluxes are calculated by the formulas (53) and (54), and, instead of (40), the following equality is valid:

dσij = 2µdεij + δij [λ dεkk − 3K(α1 − α2) dC1 − 3Kαs dfs].

Similarly to [1, 2], we can easily show, based on the problems of saturation of bodies of various shapes with
impurities, that, in the case of slow diffusion and with no external mechanical action exerted on the system, the
effect of internal stresses on the transport processes can be treated if the effective diffusion coefficients are considered
to be variable quantities, provided that the following condition of smallness of the dimensionless coefficient (similar
to the connectivity coefficient in the theory of thermoelasticity) is valid:

ω =
(3Kα1)2

λ+ 2µ
m1

ρRT
.

Under a high-intensity external mechanical action or in the case of a substantially nonuniform stress field,
it seems that the terms proportional to ∇σkk will prevail in Eqs. (53) and (54). Such problems need a special
consideration.

Conclusions. Thus, the present paper extends the model of mechanics of continuous media to the case of
anisotropic media with volume and interfacial diffusion. Expressions are obtained for the fluxes of components and
for the fluxes of internal interfaces. It is shown that, to describe the direct and cross processes in a binary isotropic
medium with internal interfaces, three coefficient are sufficient, which can be calculated or found independently. It
is shown that interstitial diffusion in a binary isotropic medium with allowance for stresses can be described similarly
to diffusion, barodiffusion, and other processes in liquid media. Diffusion in media with dislocations, vacancies, or
lattice imperfections such as voids or cracks can be treated similarly.

This work was supported by the Council on Presidential Grants of the Russian Federation for Young Scien-
tists — Doctors of Sciences (Grant No. 00-15-99278).
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